Mass vaccination with oral cholera vaccines in response to an outbreak in Guinea

Iza Ciglenecki, Keita Sakoba, Francisco Luquero, Melat Heile, Rebecca Grais, Francois Verhoustraeten, Dominique Legros

NOT FOR CITATION OR PUBLICATION
Cholera prevention and control

• Provision of safe water and proper sanitation are the long-term solution for cholera control

• Burden of cholera increasing with large-scale outbreaks in the past years (Haiti and Zimbabwe)

• Two safe and effective oral cholera vaccines (OCV) are currently prequalified by the WHO

• WHO has discouraged the used of OCV as reactive tools, but changed this recommendation in 2010
Background

• First time a reactive campaign with an OCV is conducted in Africa

• First time that Shanchol® is used in Africa
Cholera in Guinea

Regularly big epidemics (2003-2008), high CFR, no cases since 2009

AR highest in Maritime districts

Epidemics start off from the islands in Forecariah / Boffa prefectures

Seasonal pattern - peak follows rainy season peak (start in June/July)
Cholera in Guinea: 2012

RAINY SEASON
Decision making process

- Early in the season
- No major outbreak since 2007
- Large epidemic on-going in Sierra Leone (over 2000 cases in March)
- MSF intervention in both affected areas: standard package cholera intervention (case mng + prevention)
Looking at:

• Feasibility

• Vaccine coverage and acceptability

• Vaccine effectiveness
Getting started: target population

• All persons > 1 year presenting at vaccination sites

• Boffa: 163’086

• (Forecariah: 46’008)
Getting started: vaccines
Getting started: water
Getting started: documentation

Vaccination cards

Tally sheets

NOT FOR CITATION OR PUBLICATION
Getting started: strategy – village by village

Boffa: 31 teams x 9 members
5-6 days per round
3 bases

Forecariah: 12 teams x 5 members
6 days per round
1 base
Getting started: sensitization

- Information via authorities 1 week before
- Communities: 2 days before vaccination day via crieur public & chefs de villages
- Health education – big number of messages!
- Addition of other preventive tools to vaccination (soap, sur’eau)
Campaign summary

- 316,250 vaccines delivered
- Side effects: 46 minor side effects (mainly diarrhoea and vomiting)
- Utilisation rate: 99%
- Average nb of people vaccinated per team per day: 728 (102-1830)
- Cost per dose delivered: 2.85 USD (excluding fixed costs)
Vaccine coverage and acceptability

• Household survey using cluster based sampling in Boffa and Forecariah

• Sample size:
 – 776 households (60 clusters of 13 households) in Boffa
 – 180 households (30 clusters of 6 households) in Forecariah

• Starting points: PPS with enumeration of households and GPS
Vaccine coverage by site*

<table>
<thead>
<tr>
<th></th>
<th>Boffa</th>
<th>Forecariah</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one dose</td>
<td>93.3% [91.1-95.0%]</td>
<td>94.9% [91.8-96.9%]</td>
</tr>
<tr>
<td>Fully vaccinated</td>
<td>75.8% [71.2-79.9%]</td>
<td>75.9% [69.8-80.9%]</td>
</tr>
<tr>
<td>Dropout rate</td>
<td>15.2% [12.2-18.7%]</td>
<td>13.6% [9.7-18.7%]</td>
</tr>
</tbody>
</table>

* Card (~75%) and oral reporting
Acceptability

- 4% considered that the vaccine made them feel sick

- Most participants reported that the taste of the vaccine was bad (78%)

- 99% reported that they would be vaccinated again in a future cholera vaccination campaign
Vaccine effectiveness

• Density case-control study

• Main exposure: vaccination status

• Case definition: acute watery diarrhea + positive result to RDT (sub-analysis including only culture or PCR confirmed cases)

• Low number of cases in vaccinated areas: probably due to herd protection (40 cases recruited, mainly in Koba)
Crude vaccine effectiveness estimates per protocol

<table>
<thead>
<tr>
<th>Vaccination status</th>
<th>control</th>
<th>case</th>
<th>VE*</th>
<th>95%CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unvaccinated</td>
<td>24</td>
<td>15</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomple dose**</td>
<td>39</td>
<td>14</td>
<td>38.9%</td>
<td>(-55.2% 76.0%)</td>
<td>0.300</td>
</tr>
<tr>
<td>Full course (two doses)</td>
<td>104</td>
<td>11</td>
<td>84.0%</td>
<td>(59.7% 93.6%)</td>
<td>0.000</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* VE: crude vaccine effectiveness estimates, calculated as 1-odds ratio.
** Incomple course: this category represents those individuals taking only one dose or and incomplete dose in the two doses regimen

NOT FOR CITATION OR PUBLICATION
Adjusted estimates & restricted analysis

• Estimate remain stable in the adjusted analysis:
 – 86.0% (IC95% 95.7-54.1)*

• The vaccine effectiveness in the restricted analysis to culture or PRC confirmed cases was:
 – 91.6% (IC95%: 98.3-58.6)

* Adjusted by: number of individuals living in the household, treatment of water before consumption, sharing the latrine with a cholera case and having a mobile phone
Epidemic evolution

A. Reported cholera cases, Boffa and Forecariah districts, Guinea, 2012.

- Forecariah: 344 cases / 29 deaths (CFR 8.4%)
- Boffa: 281 cases / 11 deaths (CFR 3.9%)

B. Reported cholera cases, Guinea, 2012.

- Guinea: 7223 cases / 128 deaths (CFR 1.8%)

NOT FOR CITATION OR PUBLICATION
Conclusion

- Reactive vaccination campaigns are feasible and high coverage can be reached even in rural areas with mobile populations.

- The vaccine was very well accepted by the population in an epidemic setting.

- The vaccine was efficacious to protect the population.

- Vaccination can complement the standard outbreak response, a stockpile is being created.
Acknowledgments

- MSF teams in Guinea and Geneva
- Lise Grout
- Keita Sakoba (MoH-Guinea)
- Christian Itama (WHO)
- Julien Harneis (UNICEF)
- Martin Mengel (Africhol)